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Abstract. We present a unified approach to representations of quantum mechanics on non-commutative
spaces with general constant commutators of the phase-space variables. We find two phases and duality
relations among them in arbitrary dimensions. Conditions for the physical equivalence of different repre-
sentations of a given system are analyzed. Symmetries and classification of phase spaces are discussed.
Especially, the dynamical symmetry of a physical system is investigated. Finally, we apply our analyses to
the two-dimensional harmonic oscillator and the Landau problem.

1 Introduction

The problem of quantum mechanics on non-commutative
spaces can be understood in the framework of deformation
quantization. This is a subject with a long history start-
ing with works of Wigner, Weyl and von Neumann (see
[1] for a recent review). More recently, the investigation
of non-commutative quantum mechanics was inspired by
the development that led to non-commutative field the-
ory. Namely, it was realized that low-energy effective field
theory of various D-brane configurations has a configura-
tion space which is described in terms of non-commuting,
matrix-valued coordinate fields [2]. Then, it was shown
that, in a certain limit, the entire string dynamics can
be described by minimally coupled gauge theory on non-
commutative space [3]. Intensive studies of field theories
on various non-commutative spaces [4] were also inspired
by the connection with M-theory compactifications [5] and
more recently, by the matrix formulation of the quantum
Hall effect [6]. In order to study phenomenological conse-
quences of non-commutativity, a non-commutative defor-
mation of the standard model has been constructed and
analyzed [7].

In the last two years a lot of work has been done in an-
alyzing and understanding quantum mechanics (QM) on
non-commutative (NC) spaces [8–18] and also in applying
it to different physical systems in order to test its relevance
to the real world [19,20]. Still, there are many different
views and approaches to non-commutative physics [21–
23]. Some important questions, such as the physical equiv-
alence of different non-commutative systems, as well as
their relation to ordinary quantum mechanics with canon-
ical variables have not been completely resolved. The sym-

a e-mail: larisa@irb.hr
b e-mail: meljanac@irb.hr

metries and the physical content in different phases have
not been completely elucidated, even in the simplest case
of harmonic oscillator on the non-commutative plane.

In this paper, we present a unified approach to repre-
sentations of NCQM in arbitrary dimensions. The condi-
tions for the physical equivalence of different representa-
tions of a given system are analyzed. We show that there
exist two phases in parameter space. Phase I can be viewed
as a smooth deformation of ordinary QM, where all phys-
ical quantities have a smooth limit to physical quantities
in ordinary QM. Phase II is qualitatively different from
phase I and cannot be continuously connected to ordinary
QM. There is a discrete duality transformation connecting
the two phases.

Furthermore, we investigate symmetry transformations
preserving commutators, the Hamiltonian and also the
dynamical symmetry of the physical system. We analyze
the angular momentum generators, and give conditions for
their existence.

We demonstrate our general results on the simple ex-
ample of a harmonic oscillator on a non-commutative
plane. Especially, we describe the dynamical symmetry
structure and discuss the uncertainty relations. Finally,
we briefly comment on the NC Landau problem.

2 Non-commutative quantum mechanics
and its representations

Let us start with the two-dimensional non-commutative
coordinate plane X1, X2 and the corresponding momenta
P1, P2, where Xi and Pi are hermitean operators. We de-
scribe a problem in four-dimensional phase space using
variables U = {U1, U2, U3, U4} = {X1, P1, X2, P2}, where
the Ui satisfy the general commutation relations
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[Ui, Uj ] = iMij , i, j = 1, 2, 3, 4, (1)

and Mij = −Mji are real constants (c-numbers). The an-
tisymmetric matrix M is parametrized by six real param-
eters:

M =




0 �1 θ φ1

−�1 0 φ2 B

−θ −φ2 0 �2

−φ1 −B −�2 0


 , (2)

and the determinant detM = (�1�2 −θB+φ1φ2)2 is posi-
tive. The critical point detM = 0 divides the space of the
parameters into two phases: phase I for κ = �1�2 − θB +
φ1φ2 > 0 and phase II for κ < 0. The ordinary, commuta-
tive space M0,

M0 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , (3)

has κ = 1 and belongs to phase I. Therefore, we can view
phase I as a continuous, smooth deformation of ordinary
quantum mechanics. The critical point κ = 0 corresponds
to a reduction of the dimensions in phase space and to an
infinite degeneracy of states and is related to the (non-
commutative) Landau problem [9] (see also the “exotic”
approach in [21]).

If we define the angular momentum J as

[J, Xa] = iεabXb, [J, Pa] = iεabPb, a, b = 1, 2, (4)

or
[J, Ui] = iEijUj , i, j = 1, 2, 3, 4, (5)

then for a given regular matrix M we can construct the
angular momentum only if [E, M ] = 0. This condition is
fulfilled when φ1 = φ2 and �1 = �2. Then

J = −1
2
(EM−1)ijUiUj . (6)

We see that for general M the angular momentum in the
usual sense may not exist. Moreover, even when it exists,
it may have unusual properties. Namely, it was shown in
[12] that in phase I a system could have an infinite number
of states for a given value of the angular momentum, while
in phase II the number of such states is finite.

Now, let us assume that the Hamiltonian of the sys-
tem describes the motion of a single particle on a non-
commutative plane:

H =
1
2
P2 + V (X2), (7)

with a discrete spectrum En1,n2 , where n1, n2 are non-
negative integers. The pair (H(U), M) defines a system
with a given energy spectrum and the corresponding en-
ergy eigenfunctions. We wish to characterize all systems
(H ′(U ′), M ′) with the same spectrum. The class of such

systems is very large and can be defined by all real, non-
linear, regular transformations U ′

i = U ′
i(Uj), Ui = Ui(U ′

j).
We restrict ourselves to linear transformations Gl(4, R)
in order to keep the matrix elements M ′

ij independent of
the phase-space variables. Among these, of special inter-
est are the O(4) orthogonal transformations changing the
commutation relations, and the group of transformations
isomorphic to Sp(4) keeping M invariant. Systems with
the same energy spectrum connected by transformations
that keep the commutation relations invariant are physi-
cally equivalent. In both cases, the Hamiltonian generally
changes, but the energy spectrum is invariant.

Let us consider O(4) transformations. The important
property [24,14] is that there exists an orthogonal trans-
formation R̃ such that

R̃TMR̃ =




0 |ω1| 0 0
−|ω1| 0 0 0

0 0 0 |ω2|
0 0 −|ω2| 0


 , (8)

where |ω1| ≥ |ω2| ≥ 0 and detM = ω2
1ω2

2 ≥ 0. The matrix
R̃ is unique up to the transformations S ∈ SO(4):

R̃s = SR̃, STMS = M. (9)

The first (second) phase is characterized by detR̃ = +1
(detR̃ = −1). For the two-dimensional case, the eigenval-
ues of the general matrix iM , (2), are

ω1,2 =
1
2

√
(θ − B)2 + (φ1 + φ2)2 + (�1 + �2)2

± 1
2

√
(θ + B)2 + (φ1 − φ2)2 + (�1 − �2)2. (10)

Notice that ω1 is always positive, while ω2 changes sign at
the critical point detM = 0, i.e., when θB −φ1φ2 = �1�2.

The matrix R̃ is universal, i.e., the following matrix
exists: R ∈ SO(4), with detR = 1 such that

RTMR =




0 ω1 0 0
−ω1 0 0 0

0 0 0 ω2

0 0 −ω2 0


 ≡ Jω, (11)

regardless of ω2 being positive, zero, or negative. When
ω2 < 0, we use R̃ = RF to obtain (8), where the flip
matrix F ∈ O(4) is given by

F =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (12)

At the critical point (ω2 = 0) both R and RF satisfy (8).
The most general orthogonal matrix R depends on

six continuous parameters. For fixed values {ω1, ω2}, the
number of parameters of the matrix M is the same as
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the number of parameters of R. As we have already men-
tioned, there exist orthogonal matrices that commute with
M , (9), and these matrices form a group isomorphic to
U(1) × U(1). We can use this symmetry to fix two pa-
rameters in the matrix M , and we choose �1 = �2 = 1
or �1 = −�2 = 1. This parametrization covers all pairs
{ω1, ω2} such that ω2

1 + ω2
2 ≥ 2.

The eigenvalues ω1, ω2 have the meaning of the
“Planck” constants for the new variables:

U0
i = RT

ikUk,

[X0
a , P 0

b ] = iωaδab, [X0
a , X0

b ] = [P 0
a , P 0

b ] = 0. (13)

We have transformed the non-commutative system
(H(U), M) into (H(RU0), Jω) keeping the energy spec-
trum of the system invariant. Note that for the system
(H(RU0), Jω) we cannot define the angular momentum.
In order to connect a non-commutative system with a
quantum mechanical system in ordinary space, we per-
form the following transformation:

U0 = Du0 =




√
ω1 0 0 0
0

√
ω1 0 0

0 0
√|ω2| 0

0 0 0
√|ω2|


 u0, (14)

where the variables u0 = {u0
1, u

0
2, u

0
3, u

0
4} are canonical,

i.e., [x0
a, p0

b ] = iδab and [x0
a, x0

b ] = [p0
a, p0

b ] = 0. Now we have
obtained H(U) = H(RDu0) with the standard canonical
relations for M0; see (3). The transformation D, see (14),
is valid in both phases, but at the critical point it becomes
singular. Also note that the composition L0 = RD has a
smooth limit when M → M0.

In order to make contact with other representations in
the literature [9,15], we perform a symplectic transforma-
tion on the canonical variables u0

i :

ui = Siju
0
j = V u0

i V
†, (15)

where S commutes with M0 and

V = exp
(
i
∑

viju
0
i u

0
j

)
, V V † = 1,

is a unitary operator corresponding to the symplectic
transformation S. This symplectic transformation gener-
ates a class of ordinary quantum mechanical systems
which are physically (unitary) equivalent. Of course, the
initial system (H(U), M) is not physically equivalent to
the canonical ones, but all corresponding physical quan-
tities can be uniquely determined. In Fig. 1 we show a
simple graphic description of the connection between dif-
ferent representations of NC quantum mechanics.

There is a “mirror-symmetric” diagram for phase II,
obtained using the flip matrix F in (12), where U ′ =
R′FRTU , M ′ = R′FRTMRFR′T, and L′ = R′FRTLF .
The matrix R′ is any special orthogonal matrix. The uni-
versality of the matrix R means that we can choose R′
and R to have the same functional dependence on the
matrix elements M ′

ij and Mij , respectively. We have the

κ > 0 κ < 0

�
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�
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�
��
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�

�

(u, M0)

S

(u0, M0)

DL0L

(U, M)

R

(U0, Jω)
��

F

��
F

�
�

�

��
�

�
�

�
��

�
�

�

(Fu0, FM0F )

FSF

(Fu, FM0F )

D L′
0 L′

(FU0, FJωF )

R′
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Fig. 1. Graphic representation of the transformations

discrete Z2 symmetry connecting two components of the
group O(4), or more generally, Gl(4, R).

Starting from the matrix M , we can construct the ma-
trix R by finding eigenvalues and eigenvectors of the ma-
trix iM , i.e., R = UMU†

J , where

U†
M (iM)UM = U†

J(iJω)UJ = diag(ω1, −ω1, ω2, −ω2).

For example, for φ1 = φ2 = 0, we can write the matrix R
in the following form:

R =




cos ϕ 0 sin ϕ 0
0 sin ϕ 0 cos ϕ

0 cos ϕ 0 − sin ϕ

− sin ϕ 0 cos ϕ 0


 (16)

where we choose ϕ ∈ (0, π/2), θ ≥ 0, θ + B ≥ 0 and

cos ϕ =
1√

1 + (B + ω2)2
=

ω2 + θ√
1 + (ω2 + θ)2

=
√

ω1 − B

ω1 + ω2
. (17)

The basic relations are

ω1ω2 = 1 − θB,

ω1 − ω2 = θ + B,

ω1 + ω2 =
√

(θ − B)2 + 4.

An interesting example of the matrix R is obtained in
the case θ = B, which corresponds to ϕ = π/4 in (16).
In that case the matrix R does not depend on the non-
commutativity parameters.

The R matrix was discussed in [14] in the context of
the eigenvalue problem, but only in phase I. The authors
of [14] stated that the matrix R became singular at the
critical point. However, we wish to emphasize that the
matrix R is a universal orthogonal matrix, valid in both
phases and even at the critical point.

The transformations L, S and L0 were discussed in [9,
15] for the case of a two-dimensional harmonic oscillator
and parameterization �1 = �2 = 1 and φ1 = φ2 = 0, with
the identification u0 = {Q, P} and u = {α, β}. The au-
thors of [9] treated the two phases separately, overlooking
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the universality of the transformation L0 = RD, whereas
in [15] phase II was not analyzed.

We point out that the two systems (H(U), M) and
(H ′(U ′), M ′) with the same energy spectrum and M �= M ′
are physically not equivalent. The condition for the physi-
cal equivalence is the same energy spectrum and the same
commutation relations M = M ′. Hence, even within the
same phase two systems with the same energy spectrum
can be quite different.

3 Two phases, duality and symmetries
in arbitrary dimensions

The construction of different representations of quantum
mechanics on a non-commutative plane can be easily gen-
eralized to arbitrary dimensions D. The regular, antisym-
metric matrix M is parameterized by D(2D − 1) real pa-
rameters. We can classify non-commutative spaces accord-
ing to {ω1, ω2, . . . , ωD}, eigenvalues of the Hermitean ma-
trix iM . The determinant of the matrix M is positive,
det M = ω2

1 · · ·ω2
D. The critical point detM = 0 divides

the space of the parameters in two phases. In phase I,
κ = ω1 · · ·ωD > 0, and in phase II, κ < 0. The critical
point κ = 0 may have interesting physical applications,
like the Landau problem in two dimensions.

In D dimensions, the angular momentum operators are
generators of the coordinate space rotations:

[Jab, Xc] = i(δacδbd − δadδbc)Xd,

[Jab, Pc] = i(δacδbd − δadδbc)Pd, a, b, c, d = 1, . . . , D,

and generally,

[Jab, Ui] = (Eab)ijUj , i, j = 1, . . . 2D.

For a regular matrix M we can construct the angular
momentum generators Jab = − 1

2 (EabM
−1)ijUiUj only if

[Eab, M ] = 0, for all a, b = 1, . . . , D.
There are two sets of important transformations in the

2D phase space. One is a group of linear transformations
U ′

i = SijUj preserving M , STMS = M . These trans-
formations form a group G(M) isomorphic to Sp(2D).
For every tranformation S there exists a unitary operator
V ∼ exp (i

∑
vijUiUj), and any two systems connected by

such an S transformation are physically (unitary) equiva-
lent.

The other important set of transformations are or-
thogonal transformations O(2D) preserving the spectrum
of the matrix (iM), i.e., preserving ω1, . . . , ωD up to the
signs. Transformations R ∈ SO(2D) with detR = 1 keep
the system in the same phase. There is a discrete Z2
transformation that changes the sign of one eigenvalue;
we choose ωD for definiteness. We represent this transfor-
mation using the flip matrix F , Fii = 1, i = 1, . . . , 2(D −
1), F2D−1,2D = F2D,2D−1 = 1, and all other matrix el-
ements zero. There is a simple example of this duality
transformation that connects the two phases, obtained by
choosing R′ = FRF (see Fig. 1):

ωD = −ω′
D, ωi = ω′

i, i = 1, . . . , D − 1,

FMF = M ′,
∏

ωi = −
∏

ω′
i.

In general, duality is characterized by |ωi| = |ω′
i|, ∀i and

κ = −κ′.
The matrix M can be brought to the Jω form by the

orthogonal transformation R; see (11). This R ∈ SO(2D)
matrix is unique up to the orthogonal transformations
that preserve M . For fixed values {ω1, . . . , ωD}, the num-
ber of parameters of the matrix M is the same as the num-
ber of parameters of R. The group of orthogonal transfor-
mations keeping M invariant, SO(2D)∩G(M), is isomor-
phic to [U(1)]D in the generic case. Using this freedom we
can fix M2i−1,2i = 1, ∀i or we can put M2D−1,2D = −1. So,
using the symmetry we reduce the number of continuous
phase-space parameters to 2D(D − 1).

For a special choice of phase-space parameters Mij ,
we can enlarge the symmetry group [U(1)]D. The sym-
metries are characterized by degeneracy of eigenvalues
|ωi|. If k1, . . . , kα are frequencies of the appearance of
|ω1|, . . . , |ωα| in the spectrum of the matrix iM , then the
symmetry group SO(2D) ∩ G(M) ∼ U(k1) × · · · × U(kα),
where

∑
k = D. Obviously, the largest symmetry group is

U(D). The sign of the product of eigenvalues determines
the phase and the degeneracy among the |ωi| determines
the complete symmetry structure of the phase space. In
this way, we classify the non-commutative spaces accord-
ing to {ω1, ω2, . . . , ωD}.

Figure 1 is, of course, valid in any number of dimen-
sions, and we can construct corresponding transformations
in a way analogous to the two-dimensional case.

After defining the Hamiltonian, we can also discuss the
group of linear transformations G(H) ⊂ Gl(2D, R) that
keep the Hamiltonian invariant. For the non-commutative
harmonic oscillator, this group is O(2D). The degener-
ate energy levels for a given Hamiltonian are described
by a set of orthogonal eigenstates transforming according
to an irreducible representation of the dynamical sym-
metry group. The dynamical symmetry group G(H, M)
is the group of all transformations preserving both, M
and the Hamiltonian, i.e., G(H, M) = G(H) ∩ G(M). For
fixed Hamiltonian, the dynamical symmetry depends on
M , so, by changing the parameters of the matrix M we
can change G(H, M) from Gmin(H, M) to Gmax(H, M).
For the non-commutative harmonic oscillator, the minimal
dynamical symmetry group is [U(1)]D, and the maximal
symmetry is U(D). Note, however, that after fixing both
the Hamiltonian and M , all systems connected to (H, M)
by linear transformations will have dynamical symmetry
groups isomorphic to each other.

Hence, different choices of M correspond to different
dynamical symmetries. This can be viewed as a new
mechanism of symmetry breaking with the origin in
(phase)space structure. There are possible applications to
bound states in atomic, nuclear and particle physics. From
the symmetry-breaking effects in these systems one can,
in principle, extract upper limits on the non-commutative
parameters.

4 Harmonic oscillator: an example
In order to illustrate the general claims from the preceding
sections, we choose a simple harmonic oscillator in two di-
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mensions as an example. The O(4) invariant Hamiltonian
in this case is

H =
1
2

4∑
i=1

U2
i . (18)

The constants �, m and ω are absorbed in the phase-
space variables. We parameterize the matrix M by four
parameters:

M =




0 1 θ φ1

−1 0 φ2 B

−θ −φ2 0 1
−φ1 −B −1 0


 . (19)

The eigenvalues of the matrix iM are

ω1,2 =
1
2

√
(θ − B)2 + (φ1 + φ2)2 + 4

± 1
2

√
(θ + B)2 + (φ1 − φ2)2, (20)

and the spectrum of the Hamiltonian (18) is E = ω1(n1 +
1/2) + |ω2|(n2 + 1/2) [9]; see (27) below. If the product of
eigenvalues is positive, we are in phase I, and if negative
in phase II. The frequency ω1 is always positive, and ω2
changes the sign in phase II. Duality relations between the
two phases are obtained by demanding that the physical
systems in both phases have the same energy spectrum.
In the simple case φ1 = φ2 = 0, we have a one-to-one
correspondence between (θ, B) and (θ′, B′):

θ =
1
2

[√
(θ′ − B′)2 + 4 +

√
(θ′ + B′)2 − 4

]
,

B =
1
2

[√
(θ′ − B′)2 + 4 −

√
(θ′ + B′)2 − 4

]
, (21)

and

θ′ =
1
2

[√
(θ − B)2 + 4 +

√
(θ + B)2 − 4

]
,

B′ =
1
2

[√
(θ − B)2 + 4 −

√
(θ + B)2 − 4

]
. (22)

A comment is in order. Notice that the relations (21) and
(22) are valid for |θ + B| > 2 and |θ′ + B′| > 2, respec-
tively. This is a sole consequence of the oversimplified pa-
rameterization φ1 = φ2 = 0. For every point in parame-
ter space there exists a dual point; we just have to allow
for the most general parametrization of M . Finally, from
ω1ω2 = −ω′

1ω
′
2, we obtain

1 − θB = θ′B′ − 1. (23)

This condition is necessary but not sufficient in order to
have the energy spectra in the two phases identical. A
special case (θ = θ′) of this relation was obtained in [9],
by considering the limit from the fuzzy sphere to the plane,
for the Landau problem.

Although the systems depicted in Fig. 1 are physically
distinct, the dynamical symmetry groups are all isomor-
phic to each other. At every point in Fig. 1 the generic

symmetry (ω1 �= |ω2|) is U(1) × U(1). We have only one
quadratic symmetry generator, in addition to the Hamil-
tonian

G =
∑
i,j

CijUiUj , [G, H] = 0. (24)

The matrix C is symmetric, commutes with M , [C, M ] =
0, and we can always choose TrC = 0. Then C2 is propor-
tional to the identity matrix. Namely, the C0 matrix for
the system (U0, Jω) is C0 ∼ diag(1, 1 − 1, −1). Using the
R transformation U = RU0 we obtain C = RC0RT im-
plying C2 ∼ 1I4×4. For the matrix M (19), the generator
commuting with the Hamiltonian (18) is

G =
1

1 − θB + φ1φ2

{
(B + θ)(X1P2 − X2P1)

− 1
4
(θ2 − B2 + φ2

1 − φ2
2)X

2
1

− 1
4
(θ2 − B2 − φ2

1 + φ2
2)X

2
2

+
1
4
(θ2 − B2 + φ2

1 − φ2
2)P

2
1

+
1
4
(θ2 − B2 − φ2

1 + φ2
2)P

2
2

− (φ1 − φ2)(X1X2 + P1P2) − (Bφ1 + θφ2)X1P1

− (Bφ2 + θφ1)X2P2

}
. (25)

One is tempted to call this generator the angular momen-
tum, but this requires caution, as we have already dis-
cussed. For example, in the system (H(RU0), Jω) we can-
not construct the angular momentum because [E, Jω] �= 0.
However, the symmetry generator for this system is

G0 =
1

2
√

ω1|ω2|
(
X0 2

1 + P 0 2
1 − X0 2

2 − P 0 2
2

)
.

There are special points in parameter space of en-
hanced symmetry. In the special case ω1 = ω2 (in phase
I), we have the U(2) symmetry group. In this case �1 =
�2 = 1, B = −θ and φ1 = φ2 = φ and we can construct
three generators of the dynamical symmetry satisfying the
SU(2) algebra [Li, Lj ] = iεijkLk, i, j, k = 1, 2, 3:

L1 =
1

1 + θ2 + φ2

[
X1P2 − X2P1 − φ(X1P1 + X2P2)

− θ

2
(X2

1 + X2
2 − P 2

1 − P 2
2 )

]
,

L2 =
1

1 + θ2 + φ2

[
−P1P2 − X1X2 + θ(X1P1 − X2P2)

+
φ

2
(X2

2 − X2
1 + P 2

1 − P 2
2 )

]
,

L3 =
1

1 + θ2 + φ2

[
1
2
(X2

1 − X2
2 + P 2

1 − P 2
2 )

+ θ(X1P2 + X2P1) − φ(X1X2 − P1P2)
]

. (26)
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The dual point with ω1 = −ω2, with the SU(2) symmetry
in phase II, is obtained with B = θ, φ1 = −φ2 = φ, �1 =
−�2 = 1. We wish to emphasize that the SU(2) symmetry
exists only for a special choice of parameters, and is not
a dynamical symmetry of the Hamiltonian in the generic
case (in contrast to the claims in [15]).

The transformations L, L0, S, D, R connecting differ-
ent representations (see Fig. 1) of the harmonic oscilla-
tor on the non-commutative plane were discussed in the
preceding section, and, partly, in the literature [9,14,15].
Using the matrix L0 = RD we can transform the Hamil-
tonian (18) into an ordinary QM system:

H(U) = H(RDu0) =
1
2
L0

ikL0
ilu

0
ku0

l

=
ω1

2
(u0 2

1 + u0 2
2 ) +

|ω2|
2

(u0 2
3 + u0 2

4 ). (27)

Next, we calculate the matrix elements of the observ-
ables starting form the ordinary harmonic oscillator ob-
servables:

〈Ui · · ·Uk〉 = L0
ij1 · · · L0

kjk
〈u0

j1 · · ·u0
jk

〉.

For quadratic observables in the ground state we use 〈u0 2
i 〉

= 1/2, 〈u0
1u

0
2〉 = 〈u0

3u
0
4〉 = i/2, all others are zero. For the

special case φ1 = φ2 = 0, we use the matrix R (16) to
obtain

〈X2
1 〉 = 〈X2

2 〉 =
1
2

[
ω1 cos2 ϕ + |ω2| sin2 ϕ

]
,

〈P 2
1 〉 = 〈P 2

2 〉 =
1
2

[
ω1 sin2 ϕ + |ω2| cos2 ϕ

]
. (28)

These expressions are universal, i.e., they are valid in both
phases and at the critical point.

Here, we would like to comment on the uncertainty re-
lations following from the commutation rules which define
the theory. In the simple case φ1 = φ2 = 0, we have four
non-trivial uncertainty relations ∆Ui∆Uj ≥ |Mij |/2, i.e.,

〈X2
a〉〈P 2

a 〉 ≥ 1
4
, a = 1, 2, (29)

〈X2
1 〉〈X2

2 〉 ≥ θ2

4
, 〈P 2

1 〉〈P 2
2 〉 ≥ B2

4
. (30)

We calculate the left-hand side of the relations (29) and
(30) in the ground state, using (28) and (17). In phase I we
can saturate the first two relations (29) for θ = B. In phase
II we can saturate the other two relations (30) for any B
and θ. At the critical point θB = 1 all four relations are
saturated in the ground state. In the special case in phase
I, B = 0, θ �= 0, none of the four uncertainty relations
are saturated, in agreement with the theorem valid for
quantum mechanics on the non-commutative plane with
B = 0 [25]. This short analysis also indicates that physics
in different phases is qualitatively different and depends
crucially on M .

An especially interesting physical system is the Landau
problem in the non-commutative plane, defined by H =

P2/2 and the matrix M :

M =




0 1 θ 0
−1 0 0 B

−θ 0 0 1
0 −B −1 0


 . (31)

This problem can be treated as a non-commutative har-
monic oscillator H = P2/2 + ω2X2/2, in the limit when
ω → 0. We simply define U1 = ωX1, U3 = ωX2 to obtain
a new matrix Mω

Mω =




0 ω ω2θ 0
−ω 0 0 B

−ω2θ 0 0 ω

0 −B −ω 0


 , (32)

with the determinant detMω = ω4(1 − θB)2. We find the
magnetic length (the minimum spatial extent of the wave-
function in the ground state) in a universal form, valid in
both phases and at the critical point:

〈X2
1 + X2

2 〉 = 〈r2〉 =
|1 − θB| + 1 + ω2θ2√

(ω2θ − B)2 + 4ω2
. (33)

In the limit ω → 0, the eigenvalues1 of the matrix Mω are
ω1 = |B|, ω2 = 0 and the magnetic length is

〈r2〉 =

{
2−θB

|B| , if θB < 1,

θ′, if θ′B′ > 1.
(34)

For |B| = B′ these two expressions are the same if the
duality relation (23) holds.

The above representation of the non-commutative
Landau problem as a case of the non-commutative har-
monic oscillator with ω → 0 can also be viewed as a non-
commutative harmonic oscillator with ω̃ �= 0, at the criti-
cal point θ̃B̃ = 1. The connection between the parameters
is ω̃2θ̃+1/θ̃ = B. If we insist on having the same magnetic
length in both pictures, we can fix θ̃ and ω̃.

However, these systems (the Landau problem with ω =
0 and the harmonic oscillator with ω̃ �= 0) are not physi-
cally equivalent. They have just the same energy spectrum
and the same magnetic length if we choose so. A simple
way to see this is to consider the uncertainty relations in
phases I and II for the Landau problem, and at the critical
point for the harmonic oscillator. Here we wish to empha-
size once more that the only system having equality for
both the spectrum of the Hamiltonian and the matrix of
the commutators M are physically equivalent.

5 Conclusion

We have presented a unified approach to NCQM in terms
of non-commutative coordinates and momenta in arbi-
trary dimensions and for arbitrary c-number commuta-
tion relations. We have considered all representations of

1 In the “exotic” approach [21] ωex
1 = ω1/κ = 1/ω2, ωex

2 =
ω2/κ = 1/ω1, and in the limit ω → 0 eigenvalues are |ωex

1 | →
∞, ωex

2 → 1/|B|
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NCQM connected by linear transformations from Gl(2D,
R) preserving the property that the commutation rela-
tions remain independent of the phase-space variables and
keeping the energy spectrum of the system fixed. Among
these, only the representations connected by transforma-
tions preserving the commutation relations are physically
equivalent. We classify the non-commutative spaces ac-
cording to the eigenvalues of the matrix iM , {ω1, ω2, . . . ,
ωD}. The sign of the product of eigenvalues determines
the phase, and the degeneracy among the |ωi| determine
the complete symmetry structure of phase space. Since
orthogonal transformations keep the spectrum of the ma-
trix iM fixed, they have been analyzed in detail. We have
shown that for general M the angular momentum op-
erator in the usual sense might not exist, and we have
given the condition for its existence. An important result
is that two physically distinct phases exist in arbitrary di-
mensions and that they are connected by discrete duality
transformations.

Besides the symmetry structure of space, we have also
discussed the dynamical symmetry of a physical system
and proposed a new mechanism for symmetry breaking,
originating from the phase-space structure.

In our approach to symmetries, there is no physical
principle telling us what H and M we have to choose in
terms of the non-commuting variables U . One way to test
the idea of non-commutativity is to choose the Hamilto-
nian as in ordinary quantum mechanics, and to search for
(tiny) symmetry-breaking effects induced by the phase-
space structure M . The opposite way [16] is to fix the dy-
namical symmetry structure as in ordinary quantum me-
chanics. In the latter case, the differences should appear in
the matrix elements of the observables and energy eigen-
states. Of course, one can choose a combination of both ap-
proaches. Regardless of the approach, non-commutativity
offers a new explanation of symmetry breaking, or change
in probability amplitudes as a consequence of the phase-
space (space-time) structure.

Our general approach enabled us to obtain new results
even in the simplest case of the two-dimensional harmonic
oscillator. We expect that we shall also obtain physically
interesting results in the D = 3 case, currently under in-
vestigation.
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